首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3536篇
  免费   809篇
  国内免费   404篇
化学   4099篇
晶体学   12篇
力学   23篇
综合类   33篇
数学   31篇
物理学   551篇
  2024年   5篇
  2023年   54篇
  2022年   65篇
  2021年   158篇
  2020年   226篇
  2019年   171篇
  2018年   147篇
  2017年   154篇
  2016年   247篇
  2015年   281篇
  2014年   340篇
  2013年   437篇
  2012年   333篇
  2011年   327篇
  2010年   241篇
  2009年   240篇
  2008年   238篇
  2007年   183篇
  2006年   178篇
  2005年   144篇
  2004年   109篇
  2003年   106篇
  2002年   52篇
  2001年   40篇
  2000年   35篇
  1999年   24篇
  1998年   24篇
  1997年   27篇
  1996年   35篇
  1995年   30篇
  1994年   21篇
  1993年   16篇
  1992年   13篇
  1991年   15篇
  1990年   8篇
  1989年   5篇
  1988年   10篇
  1987年   1篇
  1986年   3篇
  1985年   2篇
  1984年   1篇
  1983年   1篇
  1979年   2篇
排序方式: 共有4749条查询结果,搜索用时 31 毫秒
131.
Understanding the fundamental facts behind dynamicity of catalytic processes has been a longstanding quest across disciplines. Herein, we report self-assembly of catalytically active gold nanorods that can be regulated by tuning its reactivity towards a proton transfer reaction at different pH. Unlike substrate-induced templating and co-operativity, the enhanced aggregation rate is due to alteration of catalytic surface charge only during reactivity as negatively charged transition state of reactant (5-nitrobenzisoxazole) is formed on positively charged nanorod while undergoing a concerted E2-pathway. Herein, enhanced diffusivity during catalytic processes might also act as an additional contributing factor. Furthermore, we have also shown that nanosized hydrophobic cavities of clustered nanorods can also efficiently accelerate the rate of an aromatic nucleophilic substitution reaction, which also demonstrates a catalytic phenomenon that can lead to cascading of other reactions where substrates and products of the starting reactions are not directly involved.  相似文献   
132.
133.
134.
Microwave irradiation (MI) process characteristically enables extremely rapid “in‐core” heating of dipoles and ions, in comparison to conventional thermal (conductance) process of heat transfer. During the process of nanoparticles synthesis, MI both modulates functionality behaviors as well as dynamic of reaction in favorable direction. So, MI providing a facile, favorable and alternative approach during nanoparticles synthesis nanoparticles with enhanced catalytic performances. Although, conventionally used reducing and capping reagents of synthetic origin, are usually environmentally hazardous and toxic for living organism. But, in absence of suitable capping agent; stability, shelf life and catalytic activity of metallic nanoparticles adversely affected. However, polymeric templates which emerged as suitable choice of agent for both reducing and capping purposes; bearing additional advantages in terms of catalyst free one step green synthesis process with high degree of biosafety and efficiency. Another aspect of current works was to understand role of process variables in growth mechanism and catalytic performances of microwave processed metallic nanoparticles, as well as comparison of these parameters with conventional heating method. However, due to poor prediction ability with previously published architect OFAT (One factor at a time) design with these nanoparticles as well as random selection of process variables with their different levels, such comparison couldn't be possible. Hence, using gum Ghatti (Anogeissus latifolia) as a model bio‐template and under simulated reaction conditions; architect of QbD design systems were integrated in microwave processed nanoparticles to establish mechanistic role these variables. Furthermore, in comparison to conventional heating; we reported well validated mathematical modeling of process variables on characteristic of nanoparticles as well as synthesized gold nanoparticles of desired and identical dimensions, in both thermal and microwave‐based processes. Interestingly, despite of identical dimension, MI processed gold nanoparticles bearing higher efficiency (kinetic rate) against remediation of hazardous nitro dye (4‐nitrophenol), into safer amino (4‐aminophenol) analogues.  相似文献   
135.
We have developed a reliable, fast, and highly sensitive analytical method utilizing dispersive liquid–liquid microextraction and gold nanoparticles probes for ziram (zinc bis(dimethyldithiocarbamate)) determination. The method is based on the in situ formation of gold nanoparticles in carbon tetrachloride as an organic phase. It was found that the trace levels of ziram influenced the formation of gold nanoparticles, leading to absorbance change of a sedimented phase. The results of the colorimetric ziram determination were in the concentration range of 0.12–2.52 ng/mL with a limit of detection of 0.06 ng/mL. The formation of the stable and dispersed gold nanoparticles in the organic phase provides a good precision for dispersive liquid–liquid microextraction method, resulting in the relative standard deviation of 3.8 and 1.2% for 0.56 and 1.58 ng/mL of ziram, respectively. This method has been successfully used for the ziram determination in samples of well and river water, soil, potato, carrot, wheat, and paddy soil.  相似文献   
136.
A new preparation route is developed for the synthesis of needle-like crystals of [Au(S2CNH2)2]SCN, which avoids disproportionation of the AuI salt used as a starting material. In the crystal structure, the two crystallographically independent AuIII centers are in a square-planar environment of two S2CNH2 ligands. The Hirshfeld surface analysis reveals the presence of noncovalent intermolecular S⋅⋅⋅S interactions, which are essential for the spatial arrangement of the molecules. Density functional theory (DFT) calculations including dispersion and damping corrections result in a unit cell volume very close to the value determined experimentally. Thermal decomposition in an inert atmosphere generates black needles with lengths of up to 500 μm. X-ray powder diffraction and pair distribution function analyses demonstrate that the needles are composed of nanosized crystals with a volume-weighted average domain size of 20(1) nm. According to results of X-ray photoemission experiments, the black needles are covered by a nitrogen-rich carbon nitride with composition near (CN)2N. 13C solid-state NMR investigations indicate that two different carbon species are present, with signals corresponding well to heptazine units as in melon and triazine units as in poly(triazin imide) type compounds. Scanning transmission electron microscopy tomography evidences that the needles are composed of slightly elongated nanoparticles.  相似文献   
137.
A series of substituted phosphinines, 1-phosphabarrelenes and 5-phosphasemibullvalenes were synthesized and evaluated for their potential application as ligands in homogeneous catalytic reactions. While their buried volume (%Vbur) was calculated to get insight into the steric properties, [LNi(CO)3] complexes were prepared in order to determine the corresponding Tolman electronic parameter. ETS-NOCV (extended-transition-state natural orbital for chemical valence) calculations on [LAuCl] complexes further allowed an estimation of the σ- and π-contributions to the L− M interaction. AuI coordination compounds of selected examples were prepared and characterized by single crystal X-ray diffraction. Finally, the three classes of PIII compounds were successfully used in the AuI-catalyzed cycloisomerization of N-2-propyn-1-ylbenzamide, showing very good activities and selectivities, which are comparable with the reported data of cationic phosphorus-based gold catalysts.  相似文献   
138.
An efficient synthesis of 2-di-tert-butylphosphanylmethylpyrrole (HpyrmPtBu2), by treating 2-dimethylaminomethylpyrrole (HpyrmNMe2) with tBu2PH at 135 °C in the absence of any solvent, has allowed the preparation of the new PGeP germylene Ge(pyrmPtBu2)2 ( 1 ), by treating [GeCl2(dioxane)] with LipyrmPtBu2, in which the Ge atom is stabilized by intramolecular interactions with one (solid state) or both (solution) of its phosphane groups. Reactions of germylene 1 with Group 10 metal dichlorido complexes containing easily displaceable ligands have led to [MCl{κ3P,Ge,P-GeCl(pyrmPtBu2)2}] [M=Ni ( 2 ), Pd ( 3 ), Pt ( 4 )], which have an unflawed square-planar metal environment. Treatment of germylene 1 with [AuCl(tht)] (tht=tetrahydrothiophene) rendered [Au{κ3P,Ge,P-GeCl(pyrmPtBu2)2}] ( 5 ), which is a rare case of a T-shaped gold(I) complex. The hydrolysis of 5 gave the linear gold(I) derivative [Au(κP-HpyrmPtBu2)2]Cl ( 6 ). Complexes 2 – 5 contain a PGeP pincer chloridogermyl ligand that arises from the insertion of the Ge atom of germylene 1 into a M−Cl bond of the corresponding metal reagent. The bonding in these molecules has been studied by DFT/NBO/QTAIM calculations. These results demonstrate that the great flexibility of germylene 1 makes it a better precursor to PGeP pincer complexes than the previously known germylenes of this type.  相似文献   
139.
Plasmonic nanostructures with large absorption areas under resonant excitation have been utilized extensively in photon-assisted applications. In this work, dodecahedral Au nanobowls were first prepared by an easy and template-free method only through the introduction of H2PtCl6 and I during the growth procedure. The Au nanobowls show electron-field enhancement due to the high curvature of the bowl edge, the open region, and dodecahedral morphology. Au/Pt nanobowls, which couple plasmonic Au and catalytic Pt, were then constructed as plasmonic electrocatalysts for methanol oxidation. The mass activity reached 497.6 mA mg−1 under visible-light illumination, which is 1.9 times that measured in the dark. Simultaneously, the electrocatalytic stability is also greatly improved under light excitation. The enhanced properties of the plasmonic Au/Pt electrocatalysts are ascribed to the synergistic effect of the plasmon-enhanced photothermal and hot-carrier effects on the basis of experimental investigations. This work thus offers an effective methodology to construct efficient plasmonic electrocatalysts for fuel cells.  相似文献   
140.
Gold nanoparticles have unique and excellent medical and nonmedical properties and application compared with other metallic nanoparticles. Recently, they have been used for the prevention, control, and treatment of bacterial and fungal diseases. In the recent study, fresh and clean leaves of Allium noeanum Reut. ex Regel leaves have been used for the synthesis of gold nanoparticles. Also, we evaluated the cytotoxicity, antioxidant, and antibacterial properties of HAuCl4, A. noeanum, and the synthesized nanoparticles (Au NPs). These nanoparticles were analyzed by FT‐IR, UV, XRD, EDS, FE‐SEM, and TEM tests. FTIR results offered antioxidant compounds in the plant were the sources of reducing power, reducing gold ions to Au NPs. In TEM images revealed an average diameter of 10‐30 nm. At the beginning of biological experiments, DPPH free radical scavenging test was carried out to examine the antioxidant property. Also, in the bacterial part of this study, the concentration of HAuCl4, A. noeanum, and AuNPs with minimum dilution and no turbidity was considered MIC. To determine MBC, 60 μL of MIC and three preceding chambers were cultured on Muller Hinton Agar. The minimum concentration with no bacterial growth was considered MBC. Au NPs revealed excellent antioxidant potential against DPPH, non‐toxicity property against human umbilical vein endothelial cells, and antibacterial activities against Streptococcus pneumonia, Bacillus subtilis, Staphylococcus aureus, Staphylococcus saprophyticus, Salmonella typhimurium, Pseudomonas aeruginosa, Shigella flexneri, and Escherichia coli O157:H7. These findings show that the inclusion of A. noeanum extract improves the solubility of Au NPs, which led to a notable enhancement in the antioxidant and antibacterial effects.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号